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A reduced-order modeling approach to predict spacecraft output responses for a set of 

input factors was developed. It is based on Latin Hypercube sampling and Gaussian Process 

regression modeling. A test case, based on a simplified Orion Crew Exploration Vehicle 

Thermal Desktop® model, was developed and included nine input factors and seven output 

responses. Output response residuals, found for predicted temperatures, hydraulic power, 

and pressure, had means of 1.6 K, 0.2 W, 1.6 kPa and standard deviations of 5.0 K, 1.93 W, 

18.2 kPa, respectively. Additionally, a software tool was developed to more easily utilize the 

reduced-order model and enhance the ability to explore the data. 

Nomenclature 

k  = number of input factors 

*k  = column vector of covariances 

k  = autocovariance 

K  = covariance matrix 

l  = hyperparameter 

n  = number of samples 

x  = input factors 

trx  = input training data matrix 

y  = output response 

try  = output training data matrix 

  = predicated mean value 

v  = hyperparameter 

  = predicted standard deviation 
2

n  = noise variance 

CS = computer simulation 

GP = Gaussian Process 

LHS = Latin Hypercube Sampling 

ROM = Reduced-Order Model 

TCS = thermal control subsystem 

I. Introduction 

VALUATING thermal control subsystem (TCS) performance can be done through physical and/or computer 

experiments. Although physical experiments provide empirical evidence, they can be expensive. Significant 

costs can be incurred during fabrication (i.e. time and money) and once built, results are limited by the time it takes 

to complete all experiments. Additionally, physical experiments are limited by the flexibility of a test setup; 

consequently, parametric studies can be challenging. 

Computer experiments are an attractive option to overcome the challenges of physical experiments. Constructed 

correctly, computer experiments can easily accommodate parametric studies and are only limited by processing 

power. They are especially useful during design stages, although they too have inherent costs. Development of a 
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nominal thermal model can take days to weeks to develop with run times on the order of hours. Comparing and 

evaluating multiple TCS approaches, especially important in early design stages, amplifies these timelines. 

Considering the myriad TCS design approaches available, computational expense can become unwieldy. For 

example, consider a TCS design with five design parameters of interest each evaluated at 10 levels. Evaluating each 

combination of parameters at all levels would require 1.0E5 simulations. At 30 minutes per simulation, this would 

take over 5 years of computational time. This simple example illustrates the need for alternative approaches such as 

reduced-order modeling that enable evaluation of large design spaces. 

II. Reduced-Order Model Development 

Computer simulations have been targeted as a replacement to physical experiments for many applications1 

because they are more time and cost efficient and can provide valuable insight early in the design stages. However, 

computer experiments are often complex and computationally expensive. When built to evaluate several variables, 

these costs can become unacceptable. Because of this, spacecraft thermal analysis typically bounds a problem using 

stacked worst cases to avoid evaluation of numerous variable combinations. The result of this approach is over 

design and, as a result, increased cost. When properly developed, ROMs can overcome these challenges by 

providing a computationally efficient surrogate that accurately captures the effects of an underlying high-fidelity 

model. ROMs can then provide thousands of simulation results in seconds which enables evaluation of large design 

spaces. Stacked worst case design evalution can be eliminated and more optimized designs can be realized. 

The following provides an overview of the development of ROMs using sampling and data fitting schemes. This 

approach is considerably different than nodal reduction methods in that it relies on a set of high-fidelity model runs 

to generate the ROM. In doing this, the proposed approach is robust and can be easily applied to other problem 

classes, model types, and software packages. ROMs are based on computer simulations and therefore, should be 

designed to capture effects of the original model with the fewest number of runs. When properly developed, these 

surrogate models can predict responses at untested design points very quickly; the end result is a ROM that can 

provide thousands of simulations in seconds. The following provides an overview of the sampling (i.e. Latin 

Hypercube space-filling) and data fitting methods (i.e. Gaussian Process model fitting). 

A. Latin Hypercube Sampling 

Although full-factorial approaches examine all combinations 

of variables, they do so only at extreme values (i.e. design space 

boundaries). Consequently, interior points are overlooked and 

reduced-order models can often fail far from the boundaries. 

Therefore, space-filling designs were utilized to efficiently 

identify and evaluate interior points that would provide 

improvements in the reduced-order model. Space-filling designs 

attempt to efficiently evaluate a design space for a given number 

of computer simulations. Design approaches include: sphere 

packing, Latin Hypercube, uniform design, maximum entropy, 

and the Gaussian-Process IMSE designs1. However, Latin 

Hypercube approaches are the most commonly used for computer 

experiments1 and were used as the basis for the reduced-order 

models presented in the current work. 

1. Overview 

Latin hypercube sampling selects n  different values from 

each of k  variables
1,..., kX X . The range of each variable is 

divided into n  non-overlapping intervals on the basis of equal 

probability. One value from each interval is selected at random 

with respect to the probability density in the interval. The n  

values thus obtained for 
1X  are paired in a random manner 

(equally likely combinations) with the n  values of 
2X . These n  

pairs are combined in a random manner with the n  values of 
3X  to form n  triplets, and so on, until n  k -tuplets 

are formed.2 This is the Latin hypercube sample. It is convenient to think of this sample (or any random sample of 

size n ) as forming a n k  matrix of input where the 
thi  row contains specific values of each of the k  input 
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Figure 1. Sample Latin Hypercube. Many 

Latin Hypercube designs can be developed for a 

specific application, but some designs (d) work 

better than others (c) at filling a design space. 
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variables to be used on the thi  run of the computer model. Given 5n   and 2k  , a sample (Figure 1a) is 

illustrated in Figure 1b. However, there are samples that fill the space better (Figure 1c) than others (Figure 1d). 

2. Algorithm 

A Latin Hypercube Sampling (LHS) algorithm was developed based on concepts of the Maximin Method and 

tested using Matlab. Through research and analysis, the Maximin Method has proven to be the best and most 

efficient method,3 as it is a simple and effective design to implement and the linearity of the method results in short 

run times. Sampling testing was completed as shown in Fig. 2. Each example includes two input factors and both 8 

and 100 sampling points. 

 

  
a) 2 factors | 8 sampling points b) 2 factors | 100 sampling points 

Figure 2. Results of Latin Hypercube sampling algorithm. A robust sampling algorithm 

was developed for multiple input factors and a broad range of sampling points. 

B. Gaussian-Process Data Fitting 

The use of Gaussian processes (GPs) for regression is a relatively new concept. In 1996, Williams and 

Rasmussen4 introduced the use of GPs to high dimensional problems that have been traditionally tackled using other 

modeling techniques such as neural networks and decision trees. GP modeling does not impose a specific model 

structure on the underlying function, ( )f x , being modeled5. Instead, a Gaussian prior is placed on the range of 

possible functions that could represent the mapping of input factors x  to output responses y . The Gaussian prior 

incorporates knowledge about the underlying function in the data where available, and is specified using the GP 

covariance function. As such, GP modeling is considered to be a non-parametric modeling technique, where the 

training data are used to discover the model properties in a supervised manner. However, some basic assumptions 

must be made about ( )f x and these are specified in the GP covariance function. 

1. Overview 

Consider an experiment with training data evaluated at n locations each defined by a k-dimensional vector (i.e. k 

input factors). For training data at the i-th location, ( ,..., )
i i1 iktr trx x

tr
x , a given response is denoted by ( )

i itry y
tr

x . 

Consequently, there is a n k  training data matrix, 
trx . Outputs of these trials, ( ) ( ,..., )

1 ntr try y y  
tr tr

y x , is an n-

dimensional vector. For any location, the output is modeled as shown in Equation (1).  

 (x ) (x ) 1,..,i iy z i n    (1) 

The value   is the overall mean and (x )iz  is a Gaussian Process with ( (x )) 0iE z  , 2( (x ))i zVar z  , and 

2( (x ), (x )) (X,θ)i j z ijCov z z R 6. The resulting prediction equation contains one model term for each design point in 

the original experiment (i.e. training data). Introduced for computer experiments by Sacks, Welch, Mitchell, and 

Wynn7, this approach is desirable in computer experiments since they provide an exact fit to the training data and 

require only k+1 parameters. 
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The covariance function provides a relationship between training data. Although several approaches can be 

utilized for this correlation structure, the approach used was the squared exponential (SE) covariance function one of 

the most commonly used covariance functions1 shown in Equation (2).  
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Here, v  and l are hyperparameters that define the properties of the covariance function. The SE covariance 

function assumes that input points that are close together in the input space correspond to outputs that are more 

correlated than outputs corresponding to input points which are further apart. For example, if 
i jx x , ( , )i jk x x tends 

towards its maximum, 2v ; conversely if 
i jx x , ( , )i jk x x tends towards its minimum, 0. The covariance matrix, K , 

includes all training data as shown in Equation (3).   
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This equation becomes, 
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Consider training data consisting of four (i.e. 4n  ) combinations of inputs,
trx , and outputs,

try  as shown in 

Equation (5).  

 

1 0

2 1

3 2

4 3

   
   
    
   
   
   

tr tr
x y   (5) 

Assuming hyperparameters of 1v  and 1l  , the covariance matrix, K , becomes, 

 

1 0.607 0.135 0.011

0.607 1 0.607 0.135

0.135 0.607 1 0.607

0.011 0.135 0.607 1

 
 
 
 
 
 

K . (6) 

This demonstrates the strong correlation between like values (i.e. training data near one another). Covariances 

between test and training data points is then defined as shown in Equation (7).  
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( , , ) exp 1

2

jtr

tr i

x x
k v l x v i n

l


  
 

    
 

  (7) 

A column vector of covariances between test and training data points is defined as shown in Equation (8). 
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Finally, the autocovariance of the test input is defined as shown in Equation (9). 

 
2

2

2

( )
( , , ) exp

2

x x
k v l x v

l


  
   

 
  (9) 

Using the previously defined covariance values, the predicted mean and standard deviation for a given input 

value are found using Equations (10) and (11). 

 1

*( ) T

trx  k K y  (10) 

 2 1 2

** * *( ) T

nx k   k K k  (11) 

2. Hyperparameter Optimization 

Before the output response y  for a given input is found, the unknown hyperparameters of the covariance 

function (i.e. l , v , and a noise variance 2

n  assumed to be zero) must be optimized to suit the training data. This is 

performed via minimization of the log marginal likelihood8 given by 

  11 1
log( ( | )) log log(2 )

2 2 2

T

tr tr tr tr

n
p   y x y K y K  (12) 

The log marginal likelihood can be used to choose between different models. This equation is made up of a 

combination of 
11

2

T

tr tr


y K y that determines the success of the model at fitting the output data, a model complexity 

penalty  
1

log
2

K , and a constant term that depends on the training data set size log(2 )
2

n
 . 

3. Example case 

A Gaussian Process Regression algorithm was developed in Fortran. This algorithm was tested using nominal 

training data consisting of eleven (i.e. 11n  ) combinations of inputs, 
trx , and outputs, 

try  as shown in Equation 

(13).  
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tr

tr

x

y
 (13) 

Using a hyperparameter combination ν = 500 | l = 500, the Fortran algorithm was run from x = 0 to 100. The 

results, showing training data and Gaussian Process results, are shown in Fig. 3a.  

 

  
a) ν = 500 and l = 500 b) ν = 50 and l = 50 

Figure 3. Sample Gaussian Process algorithm results. A robust data fitting algorithm 

was developed based on Gaussian Process methods and is sensitive to the selection of 

hyperparameters. 
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Based on minimization of Equation (12), the hyperparameters were found to be approximately 50l  and 

50v  . Using these values, and using estimates of standard deviation, the prediction plot is shown in Fig. 3b. These 

figures illustrate good agreement between training data and the Fortran algorithm. However, it’s clear that changing 

hyperparameter values impacts this relationship; the results of Fig. 3b are clearly better than those of Fig. 3a and 

shows the importance of hyperparameter optimization. 

III. Results and Discussion 

As a test case, a simplified Orion Crew Exploration Vehicle (CEV) thermal model, developed in Thermal 

Desktop®, was utilized. This model was selected as it includes complexities that would provide a good test of the 

ROM approach. Although not presented here, the ROM that was developed could be used to evaluate optimal 

working fluids, impact of space temperatures, regenerator designs, radiatior architectures, and the impact of applied 

heat loads.  

The CEV thermal model consists of an external fluid loop and detailed heat rejection system (i.e. radiators) 

(Figure 4a). Simulating internal heat development of the crew module is done through a single heat source (i.e. 

symbol QLOAD). The fluid loop setpoint (i.e. temperature of FLOW.487) is controlled via a PID to control the flow 

(via a bypass loop) through a regenerative heat exchanger. Heat dissipation is rejected to a constant temperature 

environment. 

The Orion CEV thermal model consists of several thermal submodels (e.g. radiator submodel) and one fluid 

submodel (i.e. FLOW). Figure 4b illustrates the thermal model and specifies key FLOW submodel components (e.g. 

lumps and paths). Details of components within the thermal model are illustrated in Figure 4b. Included are lump 

and path numbers at key locations within the model. 

 

  
a) Thermal Desktop® Model b) Schematic of Thermal Model 

Figure 4. Illustration of Simplified Orion CEV Thermal Desktop® Model. A CEV thermal model, rendering 

shown in a), was used to demonstrate the utility of sampling and data fitting methods for developing ROMs. An 

illustration of critical nodes, showing locations of primary output responses, is shown in b).   

 

A thorough analysis of potential system fluids was completed. This was done to help build new fluid property 

files for use during simulations. In order to provide accurate data when modeling each fluid, a mass flow rate (Mdot) 

was calculated. By using known values of mass flow rates from the 50/50 PGW, Multitherm -58, Galden, and HFE 

7000, a common flow capacitance (Mdot*Cp) was calculated and compared. This average value (from Galden, 

50/50, and Multitherm) turned out to be approximately 380 Btu/hr-R at ~20 °C. The flow capacitance from HFE 

7000 was calculated. A list of mass flow rates and flow capacitances are shown in Table 1. 

 

Table 1. Summary of Inputs to Thermal Desktop 

Symbol 50/50 PGW 
MultiTherm -

58 

Dynalene 

HC-50 

Anhydrous 

Ammonia 
HFE 7000** 

Galden 

HT170 

Cp @ 20 °C (J/kg-K) 3395.90 2590.0 2701.0 4745.0 1288.2 957.0 

Mdot* (lbm/hr) 468.0 610.8 588.4 334.9 1235.0 1665.0 

Flow Capacitance (Mdot*Cp) 379.6 377.8 379.6 379.6 380.0 380.6 

* Mass flow rates are changed in order to maintain the same flow capacitance. 

** Temperature at 21.1 °C for HFE 7000. 
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Based on discussion with NASA personnel, evaluation of the thermal model, and results of a factor screening 

effort, the following input factors and corresponding ranges were selected for use in subsequent ROM efforts (Table 

2). Also included are nominal values (i.e. values that were utilized in the supplied thermal model) and justification 

for selection. 

 

Table 2. Summary of Input Factors 

No. Input Factor Symbol Name 
Range 

(Nominal Value) 
Justification 

1 Working Fluid Not Applicable 

Dynalene HC 50, 

Galden HT 170, 

HFE 7000 

Discussion with NASA Technical 

Contacts 

2 
Regenerator 

Area per Node 
Aheat_HFC 0.5 to 2.0 m2 

Bounds the range of values used within 

the thermal model 

3 
Space 

Temperature 
TEMP_SPACE 0 K to 300 K 

Discussion with NASA Technical 

Contacts (low temperature value) 

4 
Radiator 

Emissivity 
Opt_Epsilon 0.7 to 1.0 --- 

5 
Radiator Fin 

Efficiency 
rad_fin_eff 0.7 to 1.0 --- 

6 
Tube Inside 

Diameter 
RadTubD 

0.003175 m (0.125”) to 

0.005080 m (0.200”) 

Bounds the range of values used within 

the thermal model. 

7 
Fin-to-Tube 

Conductance 
TContact 

50 to 1000 

(285) 

Provides a large range around the nominal 

value. Range is much larger than that used 

for sensitivity study. 

8 

Regenerator 

Thermal Mass 

per Node 

HX_THERMAL_MASS 
500 to 4,000 J/K 

(1,450 J/K) 

Provides a large range around the nominal 

value. Range is much larger than that used 

for sensitivity study. 

9 Heatload QLOAD 0 to 4,000 W 

Provides a large range to help identify 

minimum/maximum heatloads that a 

system can accommodate. 

 

Based on discussion with NASA personnel and evaluation of the thermal model, the following primary output 

responses were selected for use in subsequent reduced-order modeling efforts (Table 3). 

 

Table 3. Summary of Primary Output Responses 

No. Output Response Symbol Name Description 

1 Set-point Temperature FLOW.487 

Temperature of FLOW.487 at end of simulation. This will 

be either 1) steady-state temperature or 2) temperature at 

end of maximum simulation time. 

2 Fluid Hydraulic Power Varies 
Calculated fluid hydraulic power based on 1) lump 

pressure differential, 2) densities, and 3) flow rate. 

3 Pressure FLOW.365 Pressure at FLOW.365 

4 Pressure FLOW.2262 Pressure at FLOW.2262 

5 Pressure FLOW.2272 Pressure at FLOW.2272 

6 Flow Rate --- System flow rate 

7 Average Radiator ∆T Varies Average ∆T as a result of TContact of 7 radiators 

 

In addition, the impact of QLOAD on a particular system configuration must be understood. This includes: A) 

the minimum heat load (i.e. QLOAD) to maintain set point (i.e. FLOW.487), B) the maximum heat load to maintain 

set point, and C) the ratio of these two values. Consequently, it was important to include a broad enough QLOAD 

range to capture the limiting conditions (i.e. A and B from above). A QLOAD range of 0 to 4,000 W was selected 

based on results of the sensitivity analysis. 

Based on prior experience, a good approximation of number of sampling points is 2k, where k is the number of 

input factors. Further, the regenerator area per node input factor (Aheat_HFC) was a FLOW (i.e. fluid submodel) 
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based variable. Because of this, updates to this variable in FloCAD could not be done under Thermal Desktop’s 

dynamic mode.9 As a result, separate runs had to be initiated by a user to ensure that changes to Aheat_HFC were 

adequately captured. Consequently, this variable was modeled at three distinct levels. At each combination of 

Aheat_HFC level and fluid type, 28 (i.e. 256) samples were simulated for a total of 768 samples per fluid. LH 

sampling points were found utilizing JMP® 11 by SAS Institute, Inc. Based on LH sampling and the developed 

high-resolution thermal model, training data was obtained. This data provided the foundation upon which the ROM 

was developed. 

A. HFE 7000 Model Test Results 

The HFE 7000 ROM predicted temperatures (i.e. set-point and average radiator ∆T) with a maximum residual 

mean of 0.6 K and standard deviation of 3.7 K. The model predicted fluid hydraulic power with a maximum residual 

mean of 0.02 W and standard deviation of 0.09 W. Finally it predicted pressures with a maximum residual mean of 

0.08 kPa and standard deviation of 0.6 kPa with a maximum percent difference standard deviation of 0.6%. The 

ROM did not perform well in capturing time to steady-state and percent bypass as indicated by high residuals and % 

difference values. In fact, maximum and minimum percent bypass values were unrealistic (i.e. greater than 100% 

and less than 0%, respectively). However, these values were not as critical as others such as fluid hydraulic power 

and pressure values. Further results can be found in Table 4 and Figure 5 and Figure 6. 

 

Table 4. HFE 7000 CS versus ROM Results for Six Output Responses (768 LH Sample Points) 

  Set-point Fluid Pressure Pressure Pressure Average Time to Percent 

 

Temperature Hydraulic (FLOW.365) (FLOW.2262) (FLOW.2272) Radiator Steady Bypass 

  

Power 

   

∆T State 

   [K] [W] [Pa] [Pa] [Pa] [K] [s] [%] 

Max ROM 303.0 2.00 114,578 113,828 106,513 4.8 4,280 122.8 

Min ROM 220.8 0.08 111,066 110,238 102,812 0.3 686 -23.0 

Max CS 306.1 2.09 114,441 113,659 106,325 4.8 3,600 99.9 

Min CS 224.6 0.14 111,414 110,635 103,337 0.1 760 0.3 

Residuals (ROM-CS) 

Max 9.5 0.28 1,700 1,609 1,466 0.5 1,743 92.9 

Min -10.0 -0.36 -2,825 -2,833 -2,961 -0.3 -2,206 -59.1 

Mean 0.6 0.02 81 80 76 0.0 -26 1.8 

Std Dev 3.7 0.09 597 586 578 0.1 645 13.5 

% Difference 

Max 3.6 30.2 1.5 1.5 1.4 425.5 200.1 35,527.2 

Min -3.6 -41.8 -2.5 -2.5 -2.8 -17.5 -61.5 -8,545.0 

Mean 0.2 1.7 0.1 0.1 0.1 9.6 9.4 470.0 

Std Dev 1.4 10.4 0.5 0.5 0.6 49.6 44.1 3,536.0 

B. Factor Sweeps 

To further assist in evaluating the accuracy of the models, factor sweeps were carried out to examine ROM 

performance over a range of input factor values. Included here are a sample of factor sweeps for Galden HT 170; 

others were carried out but not included here for brevity. For each factor sweep all factors were set at nominal values 

(Table 5) while one factor was varied over its entire range. This was done for QLOAD. 

 

Table 5. Summary of Nominal Parameter Values for Factor Sweeps 

Aheat_HFC TEMP_SPACE Opt_Epsilon rad_fin_eff RadTubD TContact HX_THERMAL_MASS QLOAD 

[m^2] [K] [---] [---] [m] [---] [J/K] [W] 

1.25 150 0.85 0.85 0.004128 525 2250 2000 
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Figure 5. HFE 7000 ROM versus CS Plots for Two Output Responses: Set-point Temperature 

and Fluid Hydraulic Power (768 LH Sample Points). The HFE 7000 ROM predicted 

temperatures and fluid hydraulic power with maximum residual means and standard deviations of 

0.6 K and 0.02 W and 3.7 K and 0.09 W, respectively. 

  
Figure 6. HFE 7000 ROM versus CS Plots for Two Output Responses: Pressure (FLOW.2272) 

and Average Radiator ∆T (768 LH Sample Points). The HFE 7000 ROM predicted pressures 

with a maximum residual mean of 0.08 kPa and standard deviation of 0.6 kPa. 

 

For each factor sweep, an output response was calculated using the ROM and CS results. The comparisons are 

shown in Figure 7. These figures illustrate that the ROM provides a useful surrogate for smooth functions. However, 

it was found that discontinuities (e.g. Time to Steady State output response) challenges the ROM predictions. The 

same discontinuities were apparent with other working fluids (i.e. Dynalene HC 50 and HFE 7000).  
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Figure 7. Galden HT 170 Set-point Temperature and Fluid Hydraulic Power CS Response and 

ROM Prediction versus QLOAD Input Factor. Discontinuities challenged the prediction 

performance of the ROM. 

C. Sampling Size 

An investigation into sampling size was started by adjusting the number of samples for the Galden HT 170 

ROM. Samples were doubled from 768 to 1536 to determine the impact on ROM performance. As shown in Figure 

8, increased sample numbers improved set-point temperature prediction. In fact the maximum residual means 

improved from 0.3 K top 0.2 K while standard deviation improved from 5.0 K to 3.8 K. However, achieving this 

improvement required twice as many runs and the associated computational expense. In the future, additional 

investigation into sample sizes and associated penalities will be carried out. 

 

  
a) 768 Samples b) 1536 Samples 

Figure 8. Galden HT 170 ROM versus CS Plots for Set-point Temperature Output Response 

(768 and 1536 LH Sample Points). 

IV. Conclusions 

The NASA CEV ROM for Dynalene HC 50, HFE RT 170, and HFE 7000 provide a useful surrogate to more 

computationally expensive computer simulations. Several observations were made: 
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• The ROM did a good job replicating temperature output responses. Across the three fluids, the ROM 

predicted temperatures (i.e. set-point and average radiator ∆T) with a maximum residual mean of 1.6 K and 

standard deviation of 5.0 K. 

• The ROM did a good job replicating the hydraulic power output response. Across the three fluids, the ROM 

provided predictions with a maximum residual mean of 0.2 W and standard deviation of 1.93 W. 

• The ROM did a good job replicating pressure output responses. Across the three fluids, the ROM predicted 

pressure (i.e. FLOW.365, FLOW.2262, and FLOW.2272) with a maximum residual mean of 1.6 kPa and 

standard deviation of 18.2 kPa with a maximum percent difference standard deviation of 7.3%. 

• The ROM did a poor job of replicating output responses with discontinuities. This includes time to steady-

state and percent bypass. 

Although increasing sample size did improve performance of the ROM (i.e. set-point temperature), the 

improvement was small. ROM set-point temperature predictions improved from a maximum residual mean of 0.3 K 

and standard deviation of 5.0 K to 0.2 K and 3.8 K, respectively. This indicated that the 2k sample size was an 

appropriate balance of precision/accuracy and computational expense. 

The approach presented here provides a robust method for generating ROMs for a wide-range of models. These 

ROMs can then be used to more effectively explore a design space by leveraging their computational efficiency. 

Although not presented here, the NASA CEV ROM that was developed could be used to evaluate optimal working 

fluids, impact of space temperatures, regenerator designs, radiatior architectures, and the impact of applied heat 

loads. 
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